Building a Generic Date-Time Framework -
An Experience Report using C++ Templates

Jeff Garland
President & CTO
CrystalClear Software, Inc
jeff @Crystal ClearSoftware.com
Copyright © CrystalClear Software, Inc 2001
Revised September 7, 2001

Abstract

This paper describes the experiences of the author using C++ templates to build the Generic Date
Time Library (GDTL). While there are many date-time representations available for C++, the
libraries are often unsuitable for domains that need high precision, long epochs, infinity,
speciaized caendars, or custom clock sources. The GDTL is an attempt to use generic and
template programming techniques to provide a single library that meets all these demands, as

well as more typical date-time programming. To build asingle library, templates are used in
severa roles: allow user replacement of underlying date and time representations, to factor out
calendar interfaces, building range and composite types, and providing interface constraint
enforcement.

GDTL Background

| became interested in this severa years ago while helping to implement date-time classes to
support a satellite control system. The software performed extensive time calculations and had to
manage details such as leap second tables. Some calculations, needed precision down to
microseconds. Other parts of the system needed to store millions of date-timesin a database
(each day) with only second-level precision. So forcing microsecond resolution for al times
unnecessarily bloated the size of the database.

In the end, the project had more than one time library. Some good components, but a host of
project realities kept us from getting everything into asingle library. In addition, traditional
object-oriented design techniques did not directly support the required variations. Nevertheless,
the question remained, could asingle library support al the necessary variations avoiding the
duplication of code? GDTL is, at least partially, an attempt to answer this question.

Overall Goals

The table below outlines the set of design goalsfor GDTL.

Category Description [Functions

date, time, date time, date _duration,
time_duration, date_period, time_period,

Provide concrete

etc
classes for T
Interfaces manipulation of dates ﬁjpgtc:\r/t efiorrﬁlm‘;}r/llty- positive infinity,
and times o~

iterators over time and date ranges

days between dates
durations of times
durations of dates and times together

Provide abasis for
Calculation performing efficient
time calculations

traits based customization of interna
representations for size versus precision
control

Allowing the use of different epochs and

Provide the maximum precision (eg: seconds versus

Representation <sible reusability and microseconds, dates starting at the year
Flexibility ﬁo D y 2000 versus dates starting in 1700)
exibility) . :
Options for configuring unique calendar
representations (Gregorian + others)
Allow for flexible adjustments including
leap seconds
- access to a network / high resolution
Provide concrete time sources
Clock Interfaces |classesfor - retrieving the current date time
manipulation of time information to populate classes

multi-lingual support
provide |SO8601 compliant time facet
use I/0O facets for different local behavior

Provide input and
I/O Interfaces output for time
including

Table 1: Summary of GDTL Design Goals
Some Usage Examples

The following provides some ssimple examples of using GDTL date types. While GDTL supports
time types, due to space constraints this paper will focus on date representations as exampl es.

// generate types based on the gregorian_cal endar

usi ng namespace gdtl;

t ypedef basi c_dat e<gregori an_cal endar> dat e;

typedef basi c_date_durati on<gregori an_cal endar> date_durati on;
typedef peri od<date, date_durati on> date_peri od;

date d1(2000, 1, 1);

dat e_duration fourDays(4); //a nunber of days

date d2 = d1 + fourDays;

date_duration dd = d2 - dl1; //four days

date_period pl(di,d2); //a range of dates: Jan 1 - Jan 4
date_period p2(di, date_duration(4)); //2001-Jan-01 - 2001-Jan-05
p2. cont ai ns(date(2001,1,1)); //true
p2.intersect(date_period(dl,d2)); //returns date_period

Library Status

GDTL is still an experimenta library, but should be released as open source later this year.

GDTL Design Overview

GDTL uses 3 co-dependent types to enable time and date calculations: Points, durations, and
periods (or intervals). Points (in time) represent a fixed position on the time continuum. For
example, the date 2001-Jan-1 is a point with day level precision. The time 2001-Jan-1 15:14:00
isapoint with second level precision. Durations represent an unanchored elapsed period of time
(eg: 10 minutes, 22 seconds). Periods or intervals represent afixed range of time starting at one
point and ending at another.

Together, these elements provide the basis for complex calculation and reasoning about dates
and times. Thisdesign is similar to those suggested in [1] and [2] for building time based
systems.

PointsIn Time

To allow for efficient and accurate calculations, dates and times are represented as asingle
integer type. This representation is similar in concept to a Julian day number and allows for fast
comparison and compact representation. To alow for direct calculations, the underlying
representation must be monotonic. Adjustments such as leap years and leap seconds, do not enter
directly into calculations, but are imposed as a view on the underlying representation.
Adjustments are imposed on points in time when the component representation (eg: month, day,
year) is extracted for printing or other purposes.

. 10 days >
%

2260 227 228 229 3N 302 313 34
Feb 25, 2000 Mar 5, 2000

%

426 XIAT O HZE 3N A2 33 34 35
Feb 25, 2001 Mar &, 2001

Figure 1. Date Adjustment Illustration

For example, in the illustration above a ten-day time duration starting from 2000-Feb-25 and
2001-Feb-25 end on 2000-Mar-5 and 2001-Mar-6 respectively. The placement of the extra day
on the 29th day of February does not affect the internal calculations. In both cases, the elapsed
timeis 10 days.

For dates, a consistent feature across calendarsis division of the timeline into years, months, and
days. Different calendars, however, provide different handling of leap years and other
adjustments. Thus, the goal of GDTL isto allow custom calendars to provide these adjustments
and views by providing only a single component, the calendar (discussed later).

Time representations are like dates, but provide a higher resolution view of the time continuum.
For times adjustments such as the time zone and leap seconds become relevant to providing the
hour, minute, second view.

Durations

A duration is an elapsed time amount that is not anchored to a particular point on the time
continuum. Durations can be added to pointsin time to get a new point or can be used with a
point in time to create a time period. In addition, subtraction of two pointsin time produces a
duration.

The following provides a synopsis of abasi c_dat e_dur ati on.

t enpl at e<cl ass cal endar >
cl ass basic_date duration
boost :: | ess_t han_conpar abl e<basi c_dat e_dur at i on<cal endar >
boost :: equal ity_conparabl e< basi c_dat e_dur ati on<cal endar >
> >
{
publi c:
explicit basic_date_duration(unsigned | ong days);
unsi gned short days() const;
unsi gned | ong nont hs() const;
unsi gned | ong years() const;
bool operator==(const basic_date_duration& rhs) const

bool operator<(const basic_date_duration& rhs) const;
basi c_dat e_durati on operator-(const basic_date_duration& rhs);
/...

private:

typenane cal endar::duration_rep_type days_;

b
Periodd/I ntervalsRanges

Many date-time calculations are greatly smplified by direct support for intervals and ranges. For
example, questions such as.

Isadate in agiven year or month?
What is the overlap of two time periods?

can be answered directly using a the period concept. A synopsis of period is shown below.
Periods can be constructed from a point and a duration or from two points.

t enpl at e<cl ass point_rep, class duration_rep>
cl ass period {
publi c:

/1! create a period frombegin to |ast eg: [begin,!last]
peri od(point_rep begin, point_rep |last);
peri od(point_rep begin, duration_rep |len);
poi nt _rep begin() const;
poi nt _rep end() const;
point_rep last() const;
//!'various operators
bool operator==(const period& rhs) const;
bool operator<(const period& rhs) const;
bool operator>(const period& rhs) const;
/1T True if the point is inside the period
bool contains(const point_rep& point) const;
/1" True if this period fully contains (or equals) the other

peri od
bool contains(const period& other) const;
/1T True if the periods overlap in any way
bool intersects(const period& other) const;
period intersection(const period& other) const;

private:

poi nt _rep begin_;

point _rep |ast_;

b

Templatesin the Design

Replacement of Representation

To meet severa of the design goals basic classes such as date and time cannot be concrete. They
must offer the ability to change basic assumptions such as the minimum date, or epoch, that a

date class can represent. For example, the basi ¢_dat e classis atemplate that is customizable by
providing anew calendar class. A simplified synopsis of basi c¢_dat e is shown below.

t enpl at e<cl ass cal endar >
cl ass basic_date
boost :: | ess_t han_conpar abl e<basi c_dat e<cal endar >

, boost::equality_conparabl e< basi c_dat e<cal endar >
> >

{
publi c:
t ypedef cal endar cal endar _type
t ypedef basi c_date_durati on<cal endar> duration_type;
typedef typenane cal endar::ynd_type ynd_type
basi c_dat e(typenane cal endar::year_type year
typenane cal endar: : nont h_t ype nont h,
typenane cal endar::day_type day);
unsi gned | ong year() const;
unsi gned short nonth() const;
unsi gned short day() const;
bool operator<(const basic_date& rhs) const;
bool operator==(const basic_date& rhs) const;
duration_type operator-(const basic_date& d) const;
basi c_date operator-(const duration_type& dd) const;
basi c_dat e operator+(const duration_type& dd);
private:
basi c_dat e(typenane cal endar::date_rep_type days) : days_(days)
{}

typenane cal endar::date_rep_type days_;

The calendar template parameter provides the implementation type as well as customized
calendar functions. The basi c_dat e isresponsible for implementation of calculation and
comparison operators including interfacing with related types (period and duration). The
calendar provides the mapping from externa views (eg: yy/mm/dd) to the internal representation
used in basi ¢c_dat e.

Calendar Classes

A major problem with most date-time representations is the presumption of the Gregorian
calendar. GDTL breaks this assumption by providing the ability to customize basi c_dat e with a
different calendar class. The synopsis of the gregorian_calendar is shown below. Other calendars
must provide similar interfaces to allow automatic generation of date and other related classes.

cl ass gregorian_cal endar {

publi c:
typedef greg_nonth nont h_t ype;
typedef greg_day day_type;
typedef greg_year _nonth_day ynd_type;
t ypedef unsigned | ong year _type;

t ypedef unsigned | ong | ong date_rep_type;
t ypedef unsigned | ong | ong duration_rep_type;
static short day_of week(const ynd_type& ynmd);

static unsigned | ong day_nunber(const ynd_type& ynd);

static ynd_type from day_nunber (unsi gned | ong);

static bool is_|leap_year(year_type);

static unsigned short end_of nonth_day(year_type y, nonth_type
m;

static unsigned short epoch_start_year();
private:

b

The calendar provides abasic set of conversion functions that allow basi c_dat e to convert a
point-based (integer) representation to a year, month, day and vice versafor formatting and other
purposes. Overall, the calendar class can be thought of as a policy class [9] that describes the
trandation of the external date specification into the internal representation. In addition, the
calendar class exports several types that enable the generation of compatible duration and period
classes.

Precision

A fundamental issue for atime representation is the precision of representation. For example, an
application calculating a spacecraft trajectory may require extremely high precision
(microseconds) to accurately calculate orbit maneuvers. However, most applications don't
require high resolution and may not wish to pay the storage and cal culation costs associated with
maintaining extremely high precisions. The resolution of a time representation is fundamental to
its efficiency. Too large makes storage more expensive. However, too small does not allow
sufficient resolution for applications.

With GDTL, an application could use the combination of a unlimited integer classto provide a
large range and a high precision. Both basi ¢c_dat e and basi c_t i me provide the ability to
customize the internal representation. Typically an unsigned long makes a good representation.
However, any type that supports addition, subtraction, and comparisons can be utilized.

Epochs

A point in time represents an absolute position in the infinite time dimension. Since no computer
can represent an infinite dimension directly, a point must be anchored to a specific location in the
time dimension. For dates thisis called an epoch. Many C library functions provide the current
date as the offset since 1/1/1900. In GDTL, the calendar provides the starting epoch. Thisis
necessary because different calendar systems have different fixed starting points and apply
different adjustments during different periods. In addition, this allows applications to adjust the
minimum and maximum points to be represented.

Generation of Compatible Types

A key goa of GDTL isto provide systems of compatible date-time classes. For example, the
basic_date class provides a core for the creation of specific date representations with different
calendars and epochs. A specific date class aso needs compatible date iterators, date periods,
and date_durations. The generation of these compatible dependent types can be accomplished
using templates.

The diagram below shows the instantiation of basi c_dat e, basi ¢c_dat e_dur at i on, and peri od
to create a set of date classes based on the Gregorian caendar. The gr egori an_cal endar class
provides interface typesto basi c_dat e for days, months, and years. In addition, the calendar
provides compatible internal representations for both basi c_dat e and basi c_dat e_dur at i on.
Thebasi c_date_i terat or (described later) uses the arithmetic functions of the basi c_dat e
and basi c_dat e_dur at i on to provide various iteration capabilities over dates.

WY PR T VAR NS ST O S I PP T P T L | LT Y ITT) B I T A S T

——TfEendar T 7T 71— [oiiTypg dorannaType 1 I— T 1D RS
basic_date | basic_period basic_date_duration
T

I [[
«hind=({greqorian_calendar) «hind»(date, date_duration) «hind»(duration_rep_type)
|

————————— date_period |- - ------—--—--——-= date_duration
|
|
|
|

B R —)lgregorian_calendar ——————————————————

EXpOIts

|duration_rep_type|

Figure 2: Generation of Related Types
Constraining the Interface - constrained_value

One fundamental problem of date-time classes is checking the validity of input data. Dates and
times are frequently read from user interfaces, user edited files, and other error prone sources.
Many, but not all, common mistakes can be detected and provide immediate feedback on the
error. Consider the following interface:

cl ass date {
dat e(unsi gned int year, unsigned int nonth, unsigned int day);
...

b

And imagine the following user code:

date d (12,31, 2001); //oops year and day reversed

An unconstrained interface leaves open the potential of programming error propagating into the
core of the date-time library. The GDTL design attempts to separate this error checking from the
core of calculation, making error checking an independent aspect of the implementation. A
helper template, constrained _value allows for rapid generation of classes to perform range
checking. The synopsis of the constrained valueis as follows:

/1TA constrained basic type simlar to Range from Stroustrup [3]
tenpl at e<t ypenane rep_type, rep_type mn_val ue,
rep_type max_val ue, typenanme except_type>
cl ass constrai ned_val ue {
publ i c:
typedef except _type exception_type;
constrai ned_val ue(rep_type val ue) throw(exception_type);
static rep_type max();
static rep_type mn();
operator rep_type() const;
private:
rep_type val ue_;

b

Constrained values check the min and max of the specified range. For example, the date interface
can be re-written as follows:

typedef constrai ned_val ue<unsigned int, 1, 31, bad_day> day_rep;
t ypedef constrai ned_val ue<unsi gned int, 1, 12, bad_nont h>
nont h_r ep;

t ypedef constrai ned_val ue<unsigned int, 1, nmax_year, bad_year>
year _rep

cl ass checki ng_date {

/' Checki ng constructor

checki ng_date(year_rep, nonth_rep, day_rep);

b

In this example, bad_day, bad_month, and bad_year are al exception types that are thrown if the
user attempts to construct a value outside the specified range. This provides direct control over
the interface and frees the internal calculation classes from checking these ranges. Of course,
const rai ned_val ue cannot address all types of errors. A user could still switch the month and
day, and as long as they are within the valid month range, the error will not be detected.

In Effective C++ Item 46 [7], Scott Meyers uses a date class as an example to discuss preference
of compile-time versus runtime error checking. An enumeration is used to represent monthsin
combination with static objects to ensure correct construction of months for dates written into
source code. This technique can also be used in GDTL since the calendar author provides a
month class implementation for basi c_dat e.

While Meyers technique is targeted at managing compile time errors for dates written in the
source code, the constrained _value approach is targeted at providing runtime error checking.
That is, errors where the date attributes are not written into the source code, but are obtained
from auser interface, file, or other runtime data source. In addition, constrained value can go
beyond Meyers technique since it can provide checking for the days of the month and the year as
well as the month.

Of course, range checking is not the only type of checking needed to ensure correctness of a
date. There are many calendar dependent checks that cannot be performed by a
constrained_value. For example, 2001-Feb-29 is an invalid date even though the day specifier is
inavalid range. This checking is performed by the calendar classes.

Customized lterators

Another use of templatesin the GDTL isin the construction of special iterators. The

date_i terat or class provides an iterator for stepping through a series of dates. Theiterator is
another example of atype dependent on characteristics of the date representation (such as the
maximum allowed date) and hence is generated for each different date class.

In addition, dat e_i t er at or provides a mechanism to jump at afixed offset. The following code,
for example, will step through dates using a 7 day granularity.

enum dat e_resol uti ons {day, week, nonths, year, decade, century,
NunDat eResol uti ons};

/literate by adding 7 days at a tine

date_iterator<week, gregorian_cal endar> ditr(date(2000,Jan, 20));
for (ditr; ditr < date(2000, Feb,6); ++ditr) {

std::cout << *ditr << " ";

...

}

The date iterator is atemplate defined in terms of abasi ¢c_dat e and adat e_r esol uti ons
enumeration. The enumeration is used to provide template specializations for the get_offset
function that calculates the number of days to add to the current day.

tenpl at e<dat e_resol uti ons resol uti on, class cal endar >
class date_iterator ({
publi c:
typedef typenane cal endar::ynd_type ynd_type
typedef typenane basi c_dat e<cal endar>:: duration_type
durati on_type;

date_iterator(const basic_date<cal endar>& start,
unsigned int factor = 1);

bool operator< (const basi c_date<cal endar>& d);

bool operator<= (const basic_dat e<cal endar>& d);

date_iterator& operator++();

date_iterator& operator++(int);

10

basi c_dat e<cal endar > operator*();
private:
unsigned int get_offset(const date_iterator& di) const;
basi c_dat e<cal endar> current _;
unsigned int factor_;

b
Use of boost::operators

Boost::operators provides a powerful template library to smplify the definition of operators. By
using boost::operators the amount of code required to support the full complement of operatorsis
reduced. As the documentation page [4] of the boost::operators describes, operators such as

oper at or >=, can be defined in terms of oper at or <. Thus the library developer creates afew
operators and then inherits from the set of desired operators. For example, the operators for the
date class can add various comparisons as follows:

t enpl at e<cl ass cal endar >
cl ass basic_date
boost :: | ess_t han_conpar abl e<basi c_dat e<cal endar >
boost :: equal i ty_conpar abl e< basi c_dat e<cal endar >
> >

{

Additional Opportunitiesfor Templates

There are still several issuesin GDTL design that might use templates in the solution. The
following sections briefly discuss these.

Generic Interfaces

One interesting issue is the creation of a completely generic interface for the date and time
classes. As the design stands, some date-time systems cannot be represented with the basic_date
and basic_time. For example, in a Geologic date system the years, months, and days of the
basic_date are not relevant. Rather, the unit of measurement might be a span of 100 years. Here
relevant units of extraction would be centuries or millennia. Thus, currently, atemplate that
replacesbasi c_dat e (eg: basi c_geol ogi c_dat e) would need to be written in addition to the
geol ogi c_cal endar class.

One possible approach to this problem isfor basi c¢_dat e to provide additional interfaces (eg:
century()) and use the "optional functionality through incomplete instantiation" technique
described in [9]. Since basi ¢_dat e uses the calendar to calculate the view, the calendar can
provide an error message if a user attempts to use an interface that is not supported by that date
system. So, for example, basi c_dat e: : day() would not be supported by a geologic calendar
and produce an error if instantiated.

The drawback to this approach, however, isthat it is difficult envision every view method a date

system might need. In addition, it bloats the size of the basi ¢c_dat e making it harder to
understand and maintain. Finally, each calendar must support a bigger interface.

11

Calendars As Templates

In the current versions of the library, the gr egori an_cal endar classis aconcrete class.
Unfortunately, to change the epoch, for example, this class must be re-written or changed. In a
future version, this class will be templatized to allow for epoch selection within the Gregorian
system without re-writing the calendar implementation.

Another policy aspect of the calendar that should be templatized is the error checking policy. The
current implementation does not explicitly factor the checking. This is undesirable since some
systems may desire to turn of all checking, preferring performance instead. Czarneecki and
Eisenecker also describe thisissue in [10].

Observations on Template Programming

Building a generic framework is extremely difficult. In many ways, it issimilar to writing a
design pattern that allows customization of the various tradeoffs by the user. Deep experiencein
the domain and plenty of experimentation with template programming are required.

Error messages are a major drawback of template-based approaches. Compilation errors
involving a basic_date and other types create verbose error messages that typically don't
contribute to the solution of user programming errors. For example, if a program uses datesin a
standard collection, error messages can be difficult to decipher.

There are at least 3 approaches to this problem

point usersto Effective STL - Item 49 [8]
instantiate types explicitly in the library
enhance compilersto provide aliased error messages

One approach the library designer can useis to explicitly instantiate a type in the library instead
of using atypedef. For example,

class date : public basic_date <gregorian_cal endar >

{
}

date(year_type y, nmonth_type m day_type d);

The main issue with this approach is that the constructors must be written for each class. Thus
for a given date-time system this may entail writing at least a dozen constructors. However, this
is likely the best solution for a common instantiation of GDTL since it simplifies error handling
for library users.

A big improvement in compilers would be to provide aliased namesin error messages. Fully

expanded names could be provided as a detail section in the error. This would relieve both the
library developer and users from the complexity of error messages in template-based solutions.

12

Documenting template-based frameworks is aso difficult. The GDTL design covers a much
broader design range than a conventional date time library. For the average user of a standard
date class, documentation of the template customization pointsis not of interest. They are
interested simply in how to use the provided classes. Devel opers that need to extend the library
need a deeper understanding of how the library is designed. It is a struggle to design
documentation which meets both needs. In addition, the amount of work is magnified since
documentation of extension points effectively requires programming some extensions as
examples.

Finally, testing and maintaining a template-based library is much more difficult than a typical
library. The number of programmers with experience in template-based programming is
relatively small. In addition, the range of application also makes changes more difficult. An extra
dimension of ‘compilation testing' may be required to ensure that extenders do not violate the
fundamental library concepts.

Conclusions

Overall, templates have been instrumental in meeting most of the design goals for GDTL (see
Table 1). They have enabled the factoring of many decisions that are normally fixed in date-time
libraries. One major area of implementation remaining is support for the full range of
input/output as described in 1/O interfaces. Thiswill expand the use of templates further due to
the need to interface with C++ locales.

GDTL represents an example of template programming applied to the generation of concrete
types. Other examples include template complex from the C++ standard library [3], a rational
number template (boost rational) [5], and SIUnits[11]. Thisis an area of library development
that is ripe for exploitation, because it facilitates more robust and flexible programs. In the case
of GDTL, programs can be shielded from many complexities of the time-date domain. Most
simple uses of dates and times can be accommodated with a standard template instantiation.
However, template programming opens new avenues since projects that need type
customizations are not required to rebuild an entire library, to work with high precisions or non
Gregorian calendars.

Although template programming provides the tools to take software reuse to new levels,
widespread application for project development will take time. The level of difficulty associated
with building generic libraries means that only the largest projects will have justification to build
such libraries. Even then, any given project will not have the time or inclination to build for
future variability.

Acknowledgements

Thanksto Yannis Smaragdakis for suggesting the derivation-based approach for improving error
handling. Thanks to Corwin Joy who has offered several suggestions and approaches for
handling internal representations.

13

References

[1] Anderson, Francis, "A Collection of History Patterns', from Pattern Languages of Program
Design, Addison-Wesley, 2000, pp 243-297.

[2] Carlson, Andy, "Temporal Patterns’, from Pattern Languages of Program Design, Addison-
Wesley, 2000, pp 241-262.

[3] Stroustrup, Bjarne, "C++ Programming Language 3rd Edition”, Addison-Wesley, 1998, pp
236-242.

[4] Boost Operators - http://www.boost.org/libs/utility/operators.htm

[5] Boost Rational - http://www.boost.org/libs/rational/index.html

[6] Cadendar FAQ - http://www.tondering.dk/claus/calendar.html

[7] Meyers, Scott, "Effective C++", Addison-Wesley, 1992, pp 175-178.
[8] Meyers, Scott, "Effective STL", Addison-Wesley, 2001, pp 210-217.
[9] Alexandescu, Andrel, "Modern C++ Design”, Addison-Wesley, 2001, pp 13-26.

[10] Czarneecki, Krizysztof and Eisenecker, Ulrich, "Generative Programming: Methods, Tools,
and Applications', Addison-Wesley, 2000, pp 217-218.

[11] Brown, Walter, "Introduction to the Sl Library of Unit-Based Computation”,
http://fnal pubs.fnal .gov/archive/1998/conf/Conf-98-328.html, 2 September 1998.

14

